不受背景气体干扰影响
采用TDLAS技术使用的半导体激光的谱宽小于0.0001nm,约为红外光源谱宽的1/106,激光气体,远小于被测气体吸收谱线的谱宽。其频率调制扫描范围也仅包含被测气体单吸收谱线(半导体激光吸收光谱技术也因此被称为单线光谱技术),因此成功消除了背景气体交叉干扰影响。
不受粉尘和视窗污染干扰
半导体激光的波长可通过调制工作电流而被扫描,使激光波长既扫描过有气体吸收的区域,也扫描没有气体吸收的区域。当波长位于吸收区域时可测得包含气体、粉尘和视窗的总透光率T1,当波长位于无气体吸收区域时可以测得粉尘和视窗透光率T2,从而可以准确获得被测气体的透光率Tg= T1/T2。TDLAS技术通过激光波长扫描技术修正了粉尘和视窗污染对测量的影响。
响应速度快,大大降低了系统的维护工作量
避免了气体在采样管到中的长时问输送,半导体激光气体分析系统可以实现非常快的测量相应速度。采样预处理系统的维护是传统采样方式气体分析系统维护工作量的主要部分,半导体激光气体分析系统采用现场方式分析系统,济宁激光气,彻底避免了采样系统,激光气厂家报价,自动化程度非常高,操作简单易学,大大降低了系统的维护工作量。
DLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光远小于气体线的展宽。因此,激光气厂家,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式中,IV,0和IV 分别表示频率V的激光入射时和经过压力P,浓度X和光程L的气体后的光强;S(T)表示气体吸收谱线的强度;线性函数g(v-v0)表征该吸收谱线的形状。通常情况下气体的吸收较小,可用式(4-2)来近似表达气体的吸收。这些关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。
您好,欢迎莅临安徽谱纯,欢迎咨询...
![]() 触屏版二维码 |